





#### ENERGIE SOLAIRE SANS MÉTAUX RARES : RÊVE OU RÉALITÉ ?

**Philippe C. Gros** 

UMR CNRS 7053-L2CM Université de Lorraine & CNRS, Nancy, France philippe.gros@univ-lorraine.fr

# Complexes de métaux & Photochimie



- Matériaux luminescents
- Photosensibilisateurs (énergie-imagerie)
- Optoélectronique
- Comprendre les interactions lumière-matière
- Contrôler les états excités à l'aide de la chimie



# **Energie Solaire**



- Source d'énergie la plus importante de notre système solaire.
- La fusion nucléaire produit des rayonnements électromagnétiques : les photons
- La terre reçoit en une heure plus d'énergie que l'humanité en utiliserait en une année (1,5 h = 13 TW/an)





# Effet Photoélectrique - Effet Photovoltaïque

 Effet photovoltaïque découvert en 1839 par Antoine Becquerel et Edmond Becquerel







The Nobel Prize in Physics 1921 was awarded to Albert Einstein *"for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect".* 



4

## Effet photoélectrique

 Quand la matière absorbe la lumière, les photons provoquent une excitation des électrons vers des niveaux d'énergie plus élevés,





- Après excitation, la matière retourne à son état fondamental en dissipant l'énergie accumulée.
- Elle peut, soit dissiper cette énergie en vibration (non-radiative)
- Soit en émettant un photon, c'est alors une désexcitation radiative ou de la luminescence



#### Cellule solaire : semiconducteur



Si un photon possède une énergie supérieure au « band gap », un électron de la BV du matériau passe dans la BC.



# Cellule à jonction P/N



2 CM

## Première cellule (6%, jonction P/N)

Laboratoires Bell (1954)

• 1958 : satellite explorer 1









# Cellules au silicium



| REINDEIVIEIN I S        |             |  |
|-------------------------|-------------|--|
| Industriel              | Laboratoire |  |
| Silicium polycristallin | : 17-25%    |  |
| Silicium amorphe :      | 14%         |  |

#### **INCONVÉNIENTS**

- Demande en énergie importante : environ 5 années pour reproduire l'énergie nécessaire à sa fabrication.

- Coût élevé : amortissement sur plus de 10ans.



17%

12%



#### Cellules à colorants : DSSC (Dye-Sensitized Solar Cells)





11





### Analogie photosynthèse-DSSC





Charge separation by kinetic competition as in photosynthesis

|                       | PhotoSynthèse    | DSSC                |
|-----------------------|------------------|---------------------|
| Accepteur d'électrons | CO <sub>2</sub>  | TiO <sub>2</sub>    |
| Donneur d'électrons   | H <sub>2</sub> O | Régénérateur (R)    |
| Absorption de photons | Chlorophylle     | Sensibilisateur (D) |





#### Cascade réactionnelle

Activation  $TiO_2 | Dye \longrightarrow TiO_2 | Dye^*$ 

Electron injection  $TiO_2 | Dye^* \longrightarrow TiO_2 | Dye^+ + e^- (TiO_2)$  $e^- (TiO_2) \longrightarrow e^- (SnO_2:F)$  (verre conducteur)

Electron reception  $I_{3}$  + 2e (Pt)  $\longrightarrow$  3I-

Interception reaction  $3/2 \text{ I} + \text{TiO}_2 | \text{Dye}^+ \longrightarrow 1/2 \text{ I}_3^- + \text{TiO}_2 | \text{Dye}$ 



14

### Processus mis en jeu



#### VITESSES RELATIVES





# Caractérisation : Le spectre solaire et l'atmosphère



- Pour nos latitudes on applique la norme Air mass 1.5 (AM 1.5) (1000 W.m<sup>-2</sup>) (zangle zénithal solaire de 48.2°)
- AM 0 dans l'espace (pas d'atmosphère à traverser)
- AM1 pour les zones tropicales et équatoriales



### Efficacité d'une DSSC



LHE = Light harvesting efficiency  $\varphi_{inj}$  = Charge injection efficiency

 $\eta_{coll}$  = Charge collection efficiency

Incident photon-to-current conversion efficiency (IPCE)

IPCE  $(\lambda) = LHE(\lambda) \times \varphi_{inj} \times \eta_{coll}$ 

# Densité de photocourant-Voltage (J-V)









# Structure de TiO<sub>2</sub>

15kU X50,000 0.5km 0947 25/MAY/01



Figure 1.3: Scheme of the different surface titanium ions. From left to right, hydroxylated, protonated, deprotonated and dehydroxylated.













# Structure de TiO<sub>2</sub>: Effet sur le photocourant



#### Limitation de la recombinaison électrons/trous



## Le sensibilisateur



### Complexes de Ruthénium



Ruthénium tris-bipyridine







Structure électronique et processus interfacial







J. Phys. Chem. A, 2011, 3596



F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel J. Am. Chem. Soc. 2007



25



Bande additionnelle  $Ru \rightarrow NCS$  à faible énergie

N3

 $\eta = 11.03 \%$ 







Z907

 $\eta = 9.5 \%$ 

Black dye  $\eta = 11.1 \%$ 



#### Modulation des couleurs















#### Cellules solaires à colorants











EPFL's SwissTech Convention Center



### Complexes de Ruthénium





Abondance croûte terrestre: 0,001 ppm 2500 USD/kg Toxicité



Limitation du développement à large échelle







#### Trouver des alternatives durables !

#### **Complexes de fer**

Abondance : 6,3% Métal peu cher (< 1% du prix du ruthénium) Faible toxicité





Quel est le challenge ?



Laboratoire Lorrain de Chimie Moléculaire

### Ligands Pyridyl-NHC



+ Durée de vie à l'état excité atteint 9 ps

- Effet  $\sigma$ -donneur induit un effet hypsochrome

Liu et al Chem. Comm., 2013, 6412-6414.



### Comment induire un effet bathochrome?

• Mixer les ligands terpyridines et NHC







Duchanois et al Eur. J. Inorg. Chem. 2014, 3747





oNTO

vNTO

oNTO

vNTO





#### Absorption transitoire



 $\Delta A = \Delta A(t,\lambda)$  Difference between the sample absorption with and without pump pulse











<sup>3</sup>MLCT lifetime : 0,5 ps



# Modulation de la durée de vie à l'état excité MLCT avec des ligands pyridyl-NHC





### Modification de la partie NHC





#### Modification de la partie NHC



#### Effets Electroattracteurs





#### Effets électroattracteurs : pyrazine et pyrimidine









| C0         | Durée de vie état excité |
|------------|--------------------------|
| C1         | 21 ps                    |
| <b>C2</b>  | 22 ps                    |
| <b>C</b> 3 | 12 ps                    |
| <b>C4</b>  | 32 ps (record)           |

Darari et al. Dalton Trans 2019, 10915



Laboratoire Lorrain de Chimie Moléculair

#### Effet électroattracteur (COOH)



#### Spectroscopie d'absorption transitoire









Liu et al PCCP. 2016, 12550









Phys Chem Chem Phys 2016, 12550







### Calculs TD-DFT







#### Propriétés photovoltaïques

 $I_3\sp{-}/I^\circ$  (AN 50: 1,2-dimethyl-3-propylimidazolium iodide,  $I_2,$  acetonitrile), TiO\_2 (10  $\mu m)$  surface 0.36  $cm^2$ 

AM 1.5G (100 mW/cm<sup>2</sup>)





# **Optimisation des performances**



<u>SC</u>: TiO<sub>2</sub> (10  $\mu$ m) transparent, **±** Couche bloquante (CB) <u>Régénérateur</u>: I<sub>3</sub>-/I<sup>-</sup> (1-propyl-3-méthylimidazolium iodide, I<sub>2</sub>, **+** X, acetonitrile)

|                                                                                                |                                                              | V <sub>oc</sub> | <b>J</b> <sub>sc</sub> | FF | PCE% |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|------------------------|----|------|
| $\begin{array}{c} O \\ H_{3}C \\ N \\ H_{3}C \\ N \\ $ | Électrolyte #1                                               | 0.46            | 0.41                   | 68 | 0.13 |
|                                                                                                | « X »                                                        |                 |                        |    |      |
|                                                                                                | no BL, LiI, MgI <sub>2</sub>                                 | 0.38            | 2.34                   | 55 | 0.49 |
|                                                                                                | with <b>CB</b> , LiI, <b>MgI</b> <sub>2</sub>                | 0.38            | 3.34                   | 59 | 0.75 |
|                                                                                                | with <b>CB</b> , LiI, <b>MgI</b> <sub>2</sub> , <b>GuNCS</b> | 0.45            | 3.30                   | 63 | 1.00 |
|                                                                                                |                                                              |                 |                        |    |      |
| ОТОН                                                                                           |                                                              |                 |                        |    |      |

Mesuré sur 5 cellules

Surface : 0.36 cm<sup>2</sup> AM 1,5G (100mW cm<sup>-2</sup>)

Coll. S. Caramori, E. Marchini (Ferrara)

Marchini et al, Chem, Commun. 2020, 543







#### Propriétés photovoltaïques





#### Complexes Hétéroleptiques : PV

|                                     | Jsc (mA.cm <sup>-2</sup> ) | Voc(V) | FF(%) | PCE(%) |
|-------------------------------------|----------------------------|--------|-------|--------|
|                                     | 4.02                       | 0.49   | 58    | 1.14   |
| N Fe <sup>2±</sup> N OH             | 4.98                       | 0.47   | 62    | 1.45   |
|                                     | 2.90                       | 0.45   | 62    | 0.81   |
| N Fe <sup>2</sup> <sup>±</sup> N OH | 3.89                       | 0.43   | 57    | 0.95   |



<u>Moyenne de 5 cellules</u> <u>Surface</u> : 0.36 cm<sup>2</sup> AM 1,5G (100mW cm<sup>-2</sup>)

<u>SC</u>: TiO<sub>2</sub> (10 μm) transparent **Couche bloquante** <u>Electrolyte</u>:  $I_3^-/I^-$  (PMII,  $I_2$ , **MgI<sub>2</sub>, GuNCS**, **TBAI** acetonitrile

J Mater Chem A 2021











ARM14

ARM16

О҉ОН

ARM122

ARM132

| Dye    | Jsc/mA/cm <sup>2</sup> | Voc/V     | FF%  | PCE%      |
|--------|------------------------|-----------|------|-----------|
| ARM14  | 6.03±0.34              | 0.47±0.01 | 59±1 | 1.68±0.14 |
| ARM15  | 6.07±0.45              | 0.43±0.01 | 61±3 | 1.58±0.13 |
| ARM16  | 5.81±0.41              | 0.47±0.01 | 57±3 | 1.56±0.18 |
| ARM122 | 6.11±0.46              | 0.39±0.01 | 49±2 | 1.17±0.15 |
| ARM130 | 6.80±0.17              | 0.47±0.02 | 57±1 | 1.83±0.10 |
| ARM132 | 5.20±0.33              | 0.35±0.01 | 61±2 | 1.11±0.12 |
| C1     | 5.60±0.29              | 0.44±0.01 | 56±1 | 1.39±0.13 |











ARM14

ARM15

ARM16

О҉ОН

#### ARM130

ARM122









#### Le Fer pour l'énergie solaire devient une réalité !

#### Design moléculaire

- ✓ Augmentation de la durée de vie de l'état excité
- Élargissement de la fenêtre d'absorption

#### Sensibilisateurs organoferreux pour les DSSCs

Génération de photocourant

1,9 % d'efficacité : Record!
design moléculaire et composition de l'électrolyte !!

- X Voc (0,4-0,5 V) et FF (45-50) à améliorer
- X Efficacité encore à améliorer : séparation de charge
- X Interactions interfaciales







#### Remerciements

#### Synthesis-L2CM





C. Cebrian

M. Beley



T. Duchanois





K. Magra



A. Reddy

#### **Computations-LPCT**



X. Assfeld





A. Monari



M. Pastore A. Frances







S. Haacke

Li, Liu



**Photophysics-IPCMS** 

E. Domenichini





#### shockley queisser



