DE LA RECHERCHE À L'INDUSTRIE

CATALYTIC STRATEGIES FOR THE CONVERSION OF CO₂ AND BIOMASS WASTE

CEA / CNRS | Thibault Cantat

www.cea.fr

```
DE LA RECHERCHE À L'INDUSTRIE
```


SCIENTIFIC ADVICE ON CCU FOR THE EC

http://www.allea.org/sapea-provides-evidence-for-the-european-commission-on-carbon-capture-and-utilisation-technologies/

Sun Wind		
Geothermy		
Surface Ressources	es Water Uranium	
	Inorganics metals N, Si, P	Carbon feedstocks

DE LA RECHERCHE À L'INDUSTRI

A CHANGE OF PARADIGM

| 14 | 60

RENEWABLE CARBON FEEDSTOCKS

DE LA RECHERCHE À L'INDUSTRIE

VARIOUS OPPORTUNITIES TO CO₂ RECYCLING...

Cantat et al., Angew. Chem. Int. Ed. 2012, 51, 187.

| 16 | 60

DE LA RECHERCHE À L'INDUSTRI

CO₂ STABILITY

c (Graphite)

0

Two energetic challenges: thermodynamic and kinetic

| 18 | 60

CO₂ ACTIVATION BY TRANSITION METALS

CO₂ ACTIVATION BY ORGANIC COMPOUNDS

Activation by Frustrated Lewis Pairs (FLPs)

$$tBu_3P \longrightarrow B(C_6F_5)_3 \longrightarrow tBu_3P + B(C_6F_5)_3$$

Lewis pair formation prevented by sterics

CO₂ CONVERSION IN THE INDUSTRY

Industrial routes from CO₂

Bosch-Meiser process for urea production

$$2 \text{ NH}_{3} + \text{CO}_{2} \xrightarrow{\text{fast}} \left[\text{H}_{2}\text{N} - \text{C}_{O}^{\prime \prime} \stackrel{\oplus}{\rightarrow} \text{NH}_{4} \right] \xrightarrow{\text{slow}} \text{H}_{2}\text{N}^{\prime \prime} \stackrel{O}{\longleftarrow} \text{H}_{2}\text{N}^{\prime \prime} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \text{H}_{2}\text{N}^{\prime \prime} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \text{H}_{2}\text{N}^{\prime \prime} \stackrel{O}{\longrightarrow} \stackrel{$$

CO₂ CAPTURE AND MINERALIZATION

FROM CO₂ TO POLYMERS

Strategy

CI J. Am. Chem. Soc., Vol. 105, No. 5, 1983 J. Am. Chem. Soc., 2016, 138, 11117

Double metal cyanide

DE LA RECHERCHE À L'INDUSTRIE

VARIOUS OPPORTUNITIES TO CO₂ RECYCLING...

Cantat et al., Angew. Chem. Int. Ed. 2012, 51, 187.

| 25 | 60

CO₂ REDUCTION TO FUELS

CO₂ reduction: recycling to fuels

DE LA RECHERCHE À L'INDUSTRI

CO₂ REDUCTION: THERMODYNAMICS

28 | 60

Principle of CO₂ electroreduction

Multi-electron reduction of CO₂ in water (pH=7) vs. SCE $CO_{2} + e^{-} \longrightarrow CO_{2}^{\bullet --} E^{\circ} = -1.90 V$ $CO_{2} + 2 H^{+} + 2 e^{-} \longrightarrow CO + H_{2}O E^{\circ} = -0.76 V$ $CO_{2} + 2 H^{+} + 2 e^{-} \longrightarrow HCOOH E^{\circ} = -0.85 V$ $CO_{2} + 4 H^{+} + 4 e^{-} \longrightarrow HCOH + H_{2}O E^{\circ} = -0.72 V$ $CO_{2} + 6 H^{+} + 6 e^{-} \longrightarrow CH_{3}OH + H_{2}O E^{\circ} = -0.62V$ $CO_{2} + 8 H^{+} + 8 e^{-} \longrightarrow CH_{4} + 2 H_{2}O E^{\circ} = -0.48 V$ $2 H^{+} + 2 e^{-} \longrightarrow H_{2} E^{\circ} = -0.41 V$

Review: Kubiak et al., Chem. Soc. Rev. 2009, 38, 89

DE LA RECHERCHE À L'INDUSTRI

CO₂ ELECTROREDUCTION TO CO

Improved catalysts and performances

 $CO_2 + 2 H^+ + 2 e^- \longrightarrow CO + H_2O$ $E^\circ = -0.76 V$

Concomittant H₂ evolution is observed for all the catalysts

Fine management of the local concentration of H⁺ is crucial

Savéant et al., Science 2012, 338, 90

31 | 60

DE LA RECHERCHE À L'INDUSTRI

 $CO_2 + 2 H^+ + 2 e^- \longrightarrow HCOOH$ E° = -0.85 V Molecular catalysts: Copper, rhodium and iridium complexes are good catalysts Mechanistic scheme Example with iridium: H₂O OH⁻ + CO₂ = HCO₃⁻ **HCOOH** +2e-, 1H+ H⁺ + 2e⁻ -CH₃CN P(^tBu)₀ (^tBu)₂P (^tBu)₂ (^tBu)₂ CH3CN NCCH3 M-C M-H +CH₃CN CO_2 +CO₂ -HCOO (aq.) Formic acid production at -1.45V NCCH with a Faraday efficiency of 85% and a TOF of 20 s⁻¹

High selectivity: Low contamination of the products with H₂ and CO

Brookhart, JACS 2012, 134, 5500

32 | 60

Formate dehydrogenase (FDH) selectively reduces CO₂ to formate at the thermodynamic potential with a TOF of ca. 280 s⁻¹
 Industrial developments are underway, using modified copper(0) metal electrodes (Farady efficiencies >90%, overpotential ~1V)

CO₂ ELECTROREDUCTION TO METHANOL

A completely different story !

$CO_2 + 6 H^+ + 6 e^- \longrightarrow CH_3OH + H_2O E^\circ = -0.62V$

Much more difficult because of multiple H⁺ and e⁻ transfers to synchronize

Few successes:

Faradaic efficiency of CH_3OH production can reach 80.0% with a current density of 31.8 mA.cm⁻²

Sun, Han, et al. Angew. Chem. Int. Ed. 2018, 57, 14149

CO₂ ELECTROREDUCTION TO CH₃OH VIA HCOOH

BDE(C-H) = 91 kcal/mol

 $E^{\circ}(CO_2/HCOOH) = -0.61 V$

Renewable through CO₂ electrolysis

Thermodynamic and kinetic advantage

Goldberg, Miller et al., Angew. Chem. Int. Ed. 2013, 3981

Cantat et al. Angew. Chem. Int. Ed. 2014, 53, 10466

```
DE LA RECHERCHE À L'INDUSTRIE
```

Cea

CO₂ ELECTROREDUCTION TO CH₃OH VIA HCOOH

Cantat et al. Angew. Chem. Int. Ed. 2014, 53, 10466

35 | 60

Review: Meyer, Fujita et al., Acc. Chem. Res. 2009, 42, 1983

| 36 | 60

 H_2O

 $CO_2 -$

CO₂ -

 CO_2

 AI_2O_3

 CO_2 -

| 38 | 60

REDUCTION OF C-O BONDS BY HYDROGENATION

Thermodynamics

E° (V) vs NHE

 H_2 H_3COH

 HCO_2H

Li**AI**H₄

CO₂--

Kinetics

H-H Bond Dissociation Energy (BDE): 104 kcal/mol

-2.7 Na⁺ Na Cantat et al., ACS Catal. 2017, 7, 2107 Savéant et al., Chem. Soc. Rev. 2013, 42, 2423

W. Leitner et al., Angew. Chem. Int. Ed. 2012, 51, 7499

DE LA RECHERCHE À L'INDUSTRI

REDUCTION OF C-O BONDS BY HYDROSILYLATION

Thermodynamics

Kinetics

Cantat *et al.*, *ACS Catal.* **2017**, 7, 2107 Savéant *et al.*, *Chem. Soc. Rev.* **2013**, *4*2, 2423

J. Okuda et al., Chem. Eur. J. 2016, 22, 7730

REDUCTION OF C-O BONDS BY HYDROSILYLATION

Thermodynamics

Kinetics

E° (V) _{vs NHE} - H₃C<mark>O</mark>H CO₂ -0.0 $CO_2 + HCO_2H - 0.2$ CO₂ + H(CO₂)₂H -0.5 $B(OH)_3 \rightarrow BH_3$ -0.6 - SiH₄ -0.6 SiO_2 + $AI_2O_3 -$ Li**AI**H₄ -1.5 -2.7 Na⁺ Na

Cantat et al., Chem. Eur. J. **2014**, 20, 7098. Patent WO2014162266 (2013/04)

REDUCTION OF C-O BONDS BY HYDROSILYLATION

Thermodynamics

Kinetics

E° (V) vs NHE $CO_2 + H_3COH 0.0$ CO₂ + HCO₂H -0.2 CO₂ + H(CO₂)₂H -0.5 $AI_2O_3 -$ Li**AI**H₄ -1.5 -2.7 Na⁺ Na

Si-H Bond Dissociation Energy (BDE): 92 kcal/mol B-H Bond Dissociation Energy (BDE): 78 kcal/mol Generation and recyclability Et₃Si—CI $\xrightarrow{\text{LiAlH}_4}$ Et₃Si—H $\xrightarrow{\text{Et}_3\text{Si}}$ Et₃Si—[0] siloxanes silanols H_2 R_3SiH , R_2BH Energy efficiency Energy efficiency Reactivity and selectivity Reactivity and selectivity Recyclability **K** Recyclability

CO₂ TO FUELS

Limited short terms opportunities

$$H_2O \longrightarrow H_2 + \frac{1}{2}O_2$$

$$+ CO_2 \longrightarrow CH_3OH + H_2O$$

CO₂ CONVERSION TO VALUE-ADDED CHEMICALS

DE LA RECHERCHE À L'INDUSTRIE

CARBON BASED PRODUCTS IN AN ENERGY SYSTEM

Abanades, Aresta, Blekkan, Cantat, Centi, El Khamlichi, Mazzotti, Schlögl, *et al.*, *Report on CCU* for the Science Advice for Policy by European Academies, Feb. 2018

44 | 60

DE LA RECHERCHE À L'INDUSTRIE

VARIOUS OPPORTUNITIES TO CO₂ RECYCLING...

Cantat et al., Angew. Chem. Int. Ed. 2012, 51, 187.

| 45 | 60

Proof-of-concept for the diagonal approach

-Cover picture in Angewandte Chemie

-Very Important Paper (top 5%)

-Highlighted in Nature

46 | 60

World production: 500 kt/y from oil Utilization as solvents and reactants

 CO₂ as an alternative to petrochemistry Utilization of an energy vector (H, Si) coupled with a functionalizing reactant

Cantat et al., Angewandte Chemie 2012, JACS 2012, WO2012137152

47 | 60

CO₂ as a methylating reagent

Goal: diagonal reactions with large slope (access to highly reduced compounds) Energy ΗH ΗН CH₃OH: 400 €/ton -IV Vertical reduction Methylamines: > 4,000 €/ton ΗH ΗĤ Petrochemistry alkanes H_2N — CH_3 ethers -11 amines CH-R₂N 0 acetals imines ketones H. Diagonal reactions formamides carboxylic esters +// acids ЮH H R₂N н HN CH_3 Horizontal utilization R. .R +/VH₂N² NH₂ methanphetamine CO₂ Recycling carbonates (€) urea (€) Functionalization C-0 C-N C-C

DE LA RECHERCHE À L'INDUSTRI

NEW REACTIONS INVOLVING CO₂

Angew. Chem. Int. Ed. **2012**, *51*, 181 *J. Am. Chem. Soc.* **2012**, *134*, 2934 *Chem. Sci.* **2013**, *4*, 2127 *ChemCatChem* **2013**, *5*, 117

Liger et al., *EurJOC*, **2015**, 6434 Cantat *et al., Patent PCT/IB2013/054599*

BEYOND CO₂ REDUCTION: DEPOLYMERIZATION OF WASTE PLASTICS AND LIGNIN

DE LA RECHERCHE À L'INDUSTRIE

| 51 | 60

CONVERGENT REDUCTIVE DEPOLYMERIZATION

CATALYTIC HYDROSILYLATION OF ETHERS

Chem. Commun. 2014, 50, 862

DE LA RECHERCHE À L'INDUSTRI

REDUCTIVE DEPOLYMERIZATION OF LIGNIN

| 54 | 60

| 55 | 60

Feghali, Cantat et al., Energy Environ. Science, 2015, 8, 2734

AN INTEGRATIVE APPROACH

DE LA RECHERCHE À L'INDUSTRIE

BIOMASS/PLASTIC DEPOLYMERIZATION, SAME CHALLENGE ?

| 57 | 60

DE LA RECHERCHE À L'INDUSTR

DEPOLYMERIZATION OF WASTE PLASTICS

For the hydrogenation of pure PET, see: Robertson et al., Chem. Commun. 2014, 50, 4884

CLOTHING THAT CAN BE WORN AGAIN IS MARKETED WORLDWIDE AS SECOND-HAND GOODS.

REUSE

TEXTILES THAT ARE NO LONGER SUITABLE TO WEAR ARE CONVERTED INTO OTHER PRODUCTS, SUCH AS CLEANING CLOTHS.

RECYCLE

TEXTILES THAT CAN'T BE REUSED GET A NEW CHANCE AS TEXTILE FIBRES, OR ARE USED TO MANUFACTURE PRODUCTS SUCH AS DAMPING AND INSULATING MATERIALS FOR THE AUTO INDUSTRY.

ENERGY WHEN REWEAR, REUSE AND RECYCLE ARE NOT OPTIONS, TEXTILES ARE USED TO PRODUCE ENERGY.

AGENCE NATIONALE DE LA RECHERCHE

European Research Council Established by the European Commission StG 2013-2018 CoG 2019-2024

ACKNOWLEDGMENTS

PhD Students: Postdocs:

- F. Dulong Dr. O. Jacquet C. Gomes Dr. J. Pouessel Dr. A. Tlili X. Frogneux E. Feguali Dr. G. Bousrez E. Blondiaux Dr. C. Lescot S. Savourev Dr. A. Zanardi N. von Wolff Dr. A. Ohleier C. Chauvier Dr. N. Hellou Dr. L. Anthore-Dallion J. Char A. Aloisi L. Monsigny T. Nasr Allah T. Godou A. Imberdis Researchers: G. Destro
 - Dr. J.-C. Berthet L. Ponsard
 - Dr. C. Genre
 - A. Adenot Dr. G. Lefèvre
 - G. Durin Dr. P. Thuéry
 - Dr. E. Nicolas C. Hoarau

Direction des Sciences de la Matière Institut IRAMIS UMR CEA/CNRS 3299 - SIS2M

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 43 38 F. +33 (0)1 69 08 66 40

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019