

Chimie & lumière

Catalyse photorédox : coup de projecteur sur un outil innovant de synthèse durable

Amandine Guérinot

Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris - PSL

Journées de Chimie X-ENS-ESPCI Paris – 13 mai 2024

Catalyse photorédox : une révolution

La photochimie : plus de 200 ans d'histoire

Photochimie : interaction de la lumière avec la matière entraînant des transformations chimiques.

Theodor v. Grotthufs

G. L. Ciamician et Silber Université de Bologne, 1908 "Expériences sur le toit à la lumière du soleil"

La catalyse photoédox : une révolution

Catalyse photoredox : un photocatalyseur est excité par l'absorption d'une radiation lumineuse. À l'état excité, il est capable de réaliser un **transfert monoélectronique** (oxydation ou réduction) ou un **transfert d'énergie** vers une molécule du milieu réactionnel.

C. R. J. Stephenson University of Michigan

T. P. Yoon University of Wisconsin-Madison

D. MacMillan Princeton University

Cycles catalytiques

Quench réducteur

Transferts monoélectroniques

Transfert d'énergie

Quench oxydant

EA = molécule capable d'accepter un électronED = molécule capable de donner un électronSET = single-electron transfer

Le photocatalyseur réalise un SET vers une molécule (EA ou ED). Un second SET est nécessaire pour régénérer le photocatalyseur actif.

Photocatalyseurs classiques

Complexes métalliques $\begin{array}{c} & () \\$

- Excellentes propriétés photophysiques
- Temps de vie des états excités longs
- Large fenêtre de potentiels redox
- Métaux rares dans la croûte terrestre
- Coûts élevés

Photocatalyseurs organiques

I_{max} 539 nm

- Absence de métaux
- Problème de photostabilité

Focus sur $[Ru(bpy)_3]^{2+}$

MLCT = metal-to-ligand charge transfer **ISC** = intersystem crossing

- Après absorption de la lumière, un électron passe de la t_{2g} du métal à la π* du ligand (MLCT). L'état excité singulet évolue rapidement vers un état triplet plus bas en énergie.
- Temps de vie de l'état excité triplet = ca. 1100 ns. Procédés redox possibles avec d'autres molécules du milieu réactionnel.
- Forte modulation des potentiels redox avec l'absorption de la lumière : selon les espèces présentes dans le milieu le Ru(II)* peut jouer le rôle d'oxydant ou de réducteur.

Sources classiques de radicaux en catalyse photoredox

Réaction de déhalogénation sans étain

Quench réducteur

 $E_{1/2}[Ru(II)*/Ru(I)] = 0.77 V vs SCE$ $E_{1/2}[DIPEA^+'/DIPEA] = 0.68 V vs SCE$

Réoxydation du photocatalyseur/réduction de l'halogénure

 $E_{1/2}[Ru(II)/Ru(I)] = -1.33 V vs SCE$ $E_{1/2}[RX/R-X^{-}] = ca. -0.49 V vs SCE$

Réactions en cascade

Photocatalyse/organocatalyse duales

Me

OC1

′′′*t*-Bu

 \mathbf{O}

Me

Photocatalyseur

Addition conjuguée décarboxylante

Application à la synthèse d'un médicament

12

Les limitation de la catalyse photoredox "classique"

250 mg, 421 €

- Question de la durabilité
- Accès restreint en raison du prix
- Frein à l'industrialisation des procédés

Mine d'Iridium (86% en Afrique du Sud) Marché < 10 t/an Applications croissantes (OLED, moteurs, pots catalytiques...)

Photocatalyseurs basés sur des métaux abondants

 $[Ru(bpy)_3]^{2+}$ versus $[Fe(bpy)_3]^{2+}$

Champ de ligand fort, temps de vie de l'état excité = ca 1 μ s Transferts monoélectroniques possibles Champ de ligand faible, temps de vie de l'état excité = ca 150 fs Transferts monoélectroniques impossibles

Catalyse photoredox : métaux abondants

Utilisation des métaux 3d en photocatalyse : un mécanisme différent

Exploiter la labilité des ligands dans les complexes LM – Z dans des ruptures homolytiques photoinduites

M = métal 3d ou lanthanide (Ce, Fe, Cu) L = ligand spectateur Z = OH, OC(O)R, halogène, N_3 ...

LMCT = ligand-to-metal charge transfer

RH = rupture homolytique de la liaison M-Z

Comparaison des deux approches : exemple de la décarboxylation

un long temps de vie de l'état excité du PC est nécessaire

Le transfert électronique est un processus intramoléculaire : un long temps de vie de l'état excité du PC n'est pas nécessaire

Addition conjuguée décarboxylante photoinduite catalysée au fer

Transformations décarboxylantes photoinduite au cuivre

Formation de radicaux halogénés

Montages expérimentaux

Des procédures peu standardisées

Quelques exemples de montages expérimentaux tirés de la bibliographie

- Montages « faits maison », descriptions techniques incomplètes, peu caractérisés
- Problèmes de reproductibilité
- Paramètres clés : puissance lumineuse, distance à la lampe, température, sécurité

Conception et caractérisation d'un photoréacteur

Conception

Lampe Kessil (LEDs bleues)

Profil d'intensité lumineuse

Couvercle avec positions iso-intensité

Impression 3D

Puissance lumineuse homogène (mesure par actinométrie)

23

Evaluation de la reproductibilité en conditions réelles

- Equivalence des positions
- Réactions en parallèle possibles
- Reproductibilité des résultats

Catalyse photoredox

Une révolution en synthèse organique

Plusieurs approches

D'après Web of Science F. Vilela et al. *Beilstein J. Org. Chem* **2020**, *16*, 1495.

Les défis

Montée en échelle, industrialisation : chimie en flux continu

L**M**(n) — Z

- Photocatalyseurs basés sur des métaux précieux
- Large diversité de transformations
- Processus redox intermoléculaires
- Problème de durabilité et de coût

- Utilisation de métaux 3d
- Domaine en rapide croissance
- Processus redox intramoléculaires

• Utilisation de radiations peu énergétiques

