

Mesurer l'empreinte environnementale

Un outil indispensable de l'ingénieur de demain

Au programme Tour d'horizon

Contexte **environnemental**

Mesurer l'empreinte environnementale

Applications à la chimie

Ca, c'est moi : Guillaume Pakula

D'où je viens, en quelques mots

IP PARIS

2016-2019

Mon métier aujourd'hui

Dirigeant du Projet Celsius

Vos experts Bilan Carbone®

L'équipe d'ingénieurs spécialistes du climat du Projet Celsius accompagne tout type de structures dans la quantification de l'empreinte carbone de leurs projets, l'évaluation d'impact environnemental, et la mise en œuvre de solutions à fort impact climatique.

Découvrir l'équipe

Trois exemplesLe ski c'est sympa mais ça va pas durer

Trois exemplesLes transporteurs eux aussi sont sympas

Trois exemples

L'Institut Pasteur change son fusil d'épaule

Avec plus de 200 participants, la **réunion** annuelle du Pasteur Network a été coorganisée par l'Institut Pasteur de Tunis, avec le soutien du Wellcome Trust, et a inclus des discussions riches autour des piliers stratégiques du Pasteur Network :

- 1. L'avenir de la préparation aux pandémies, dans un contexte en évolution rapide avec le changement climatique et les maladies sensibles au climat.
- Le rôle du Pasteur Network dans l'avenir des **écosystèmes d'innovation et de R&D** dans les pays à revenu faible ou intermédiaire.
- L'identification des besoins pour l'amélioration continue du partage des connaissances du réseau et des communautés de pratique, ainsi que la célébra-

En 5 ans, ça a beaucoup changé!

Passons en revue

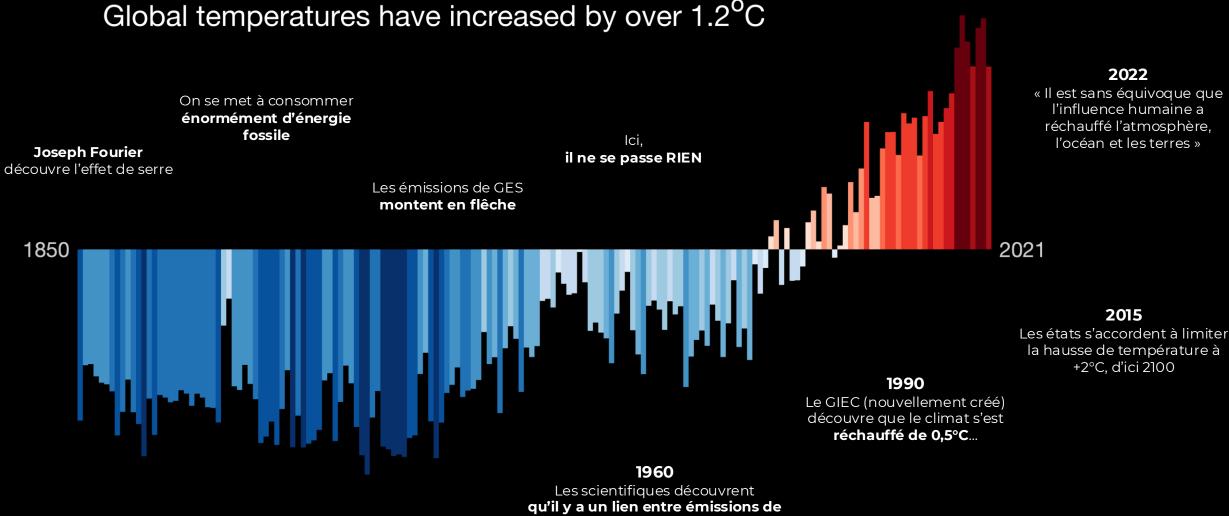
O1
Introduction
La crise
environnementale

Une histoire de température

Le jeu des 7 différences

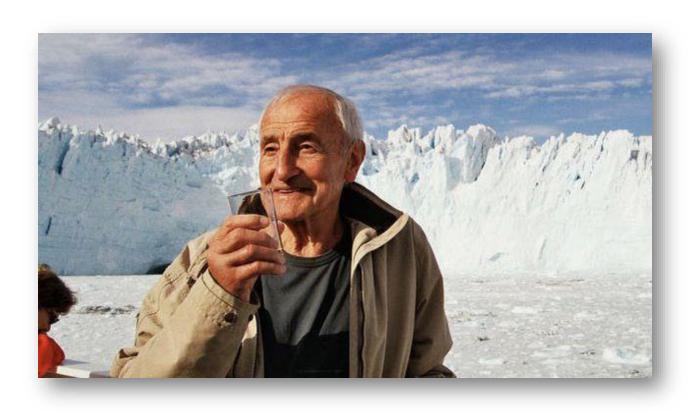
Ce sont des météos qui ont été présentées le même jour La météo de gauche est fictive

Les météos ont été filmées à 10 ans d'écart

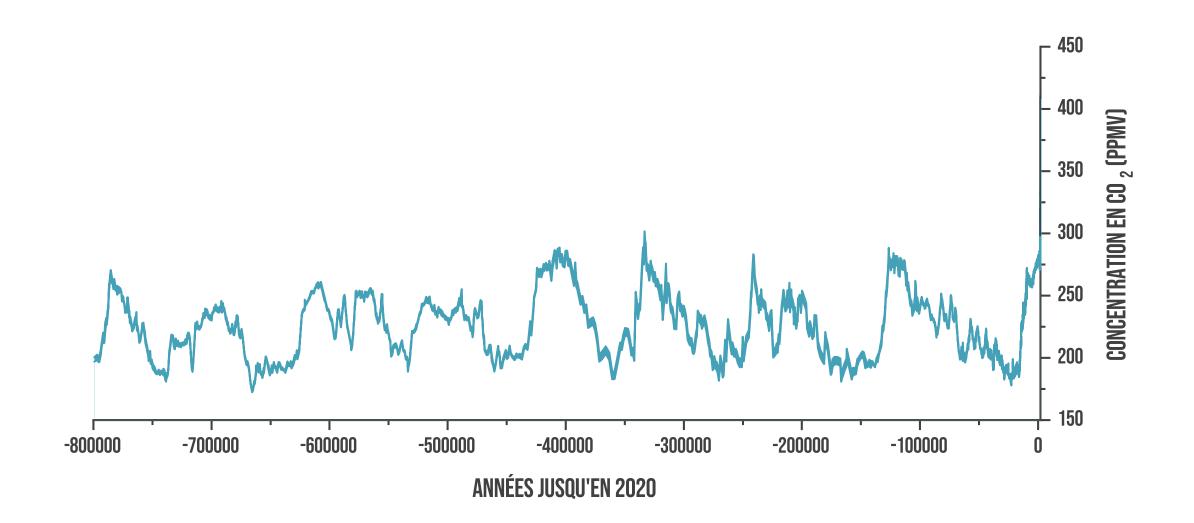

La météo de droite est erronée

Une histoire de température

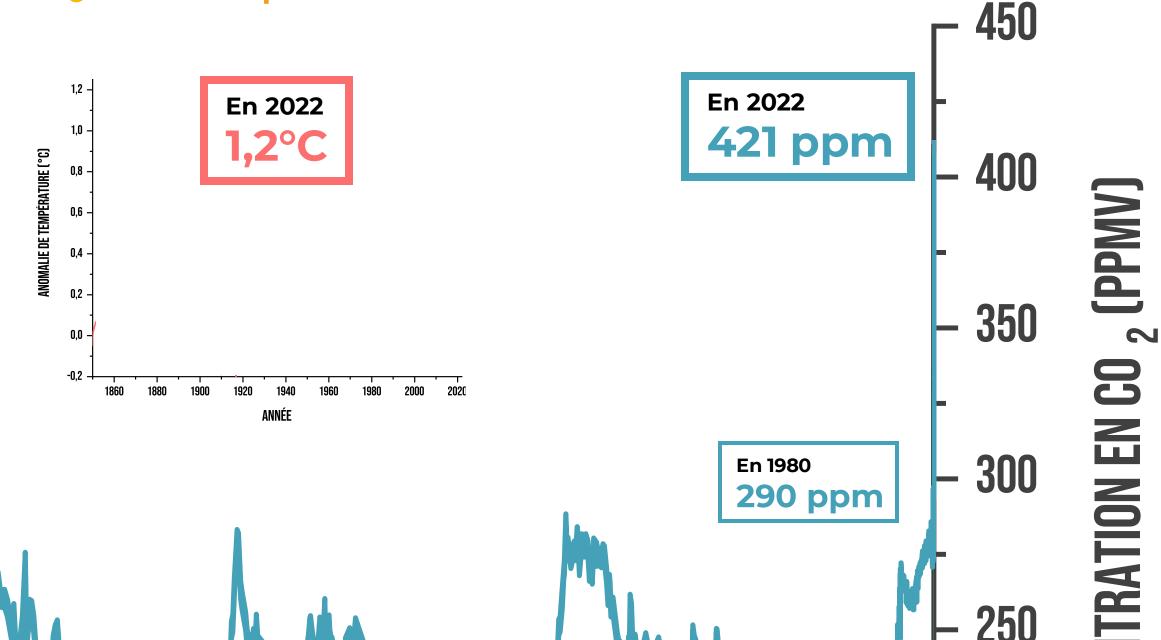
Le jeu des 7 différences


REMBOBINONS

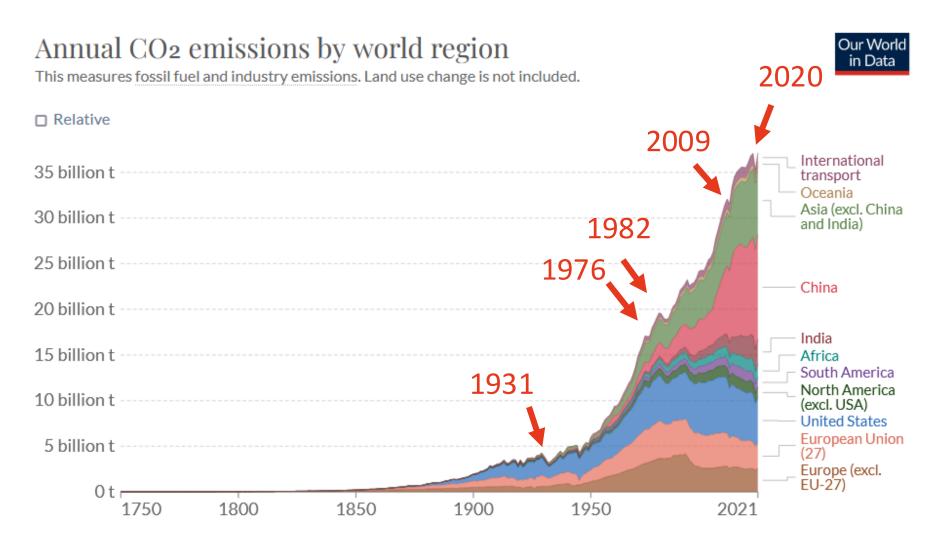
GES et la température...


2001

Le GIEC annonce que les réchauffement est majoritairement dû... à l'Homme!



Qu'est-ce qui nous arrive?



2. Qu'est-ce qui nous arrive?

Une nouvelle époque

Nos émissions de gaz à effet de serre, à la loupe

Les gaz à effet de serre

CO2

Dioxyde de carbone

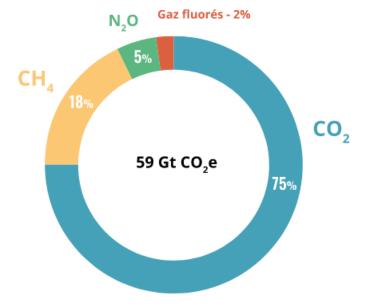
Durée de vie : plusieurs siècles

CH₄ Méthane

Durée de vie : 10 ans

N₂O Protoxyde d'azote

Durée de vie : 1 siècle


Les gaz à effet de serre

Gaz	Durée de séjour (années)	PRG selon la période considérée		
Gaz		20 ans	100 ans	500 ans
Dioxyde de carbone (CO ₂)	cf. (voir supra)	1	1	1
Méthane (CH ₄)	11,8	81,2	27,9	7,95
Protoxyde d'azote (N ₂ O)	109	273	273	130
PFC-14 (tétrafluorure de carbone, CF ₄)	50 000	5 300	7 380	10 600
HFC-23 (trifluorométhane, CHF ₃)	228	12 400	14 600	10 500
Hexafluorure de soufre (SF ₆)	1 000	18 200	24 300	29 000

Le choix d'un PRG à 100 ans est une **convention**

Emissions mondiales de gaz à effet de serre (GES) en 2019

Rapport GIEC AR6 2022

L'objectif à atteindre...D'ici 2050

Le constat de l'urgence climatique

En décembre 2015, la COP21 de Paris fixe l'objectif de restreindre le réchauffement climatique à **+2°C d'ici à la fin du siècle**

L'objectif à atteindre...D'ici 2050

En dessous de $2^{\circ}C$ = Combien de CO_2 ?

500 kg

2 tonnes

5 tonnes

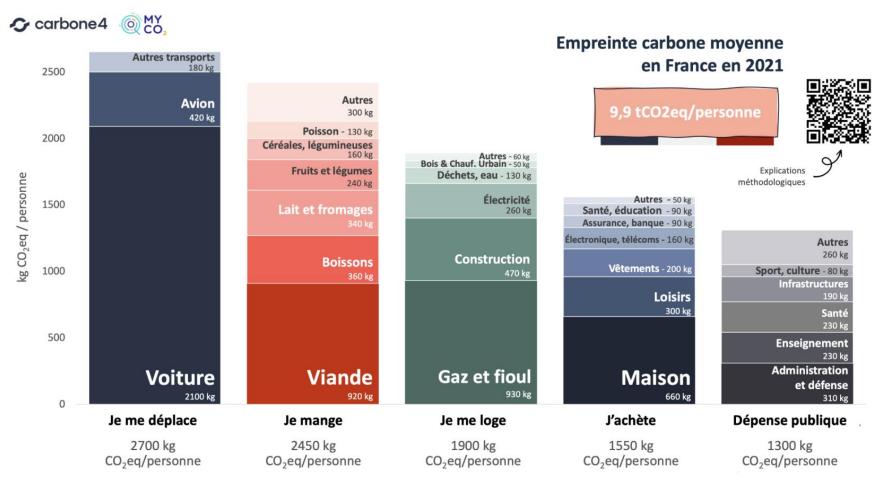
10 tonnes

(par personne et par an)

L'objectif à atteindre...D'ici 2050

En dessous de $2^{\circ}C$ = Combien de CO_2 ?

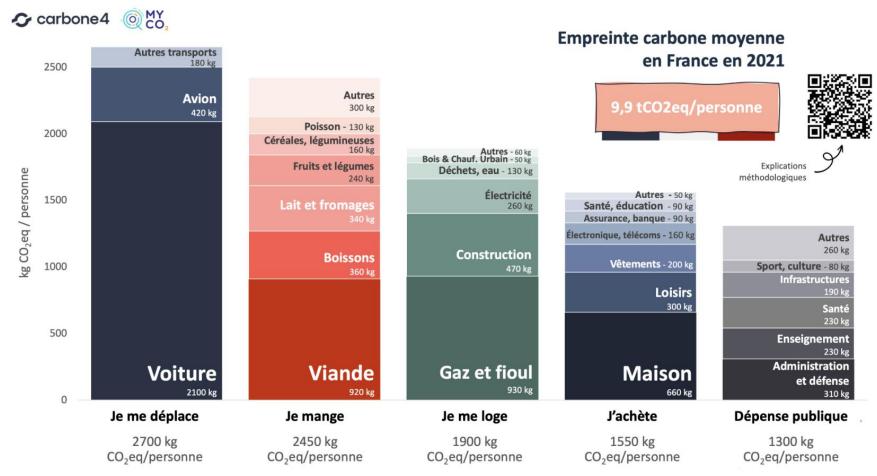
500 kg


2 tonnes

5 tonnes

10 tonnes

(par personne et par an)


La moyenne française

Gaz inclus: CO2 (hors UTCATF France), CH4, N2O, HFC, SF6, PFC, H₂O (trainées de condensation).

Source: MyCO2 par Carbone 4 d'après le ministère de la Transition écologique, le Haut Conseil pour le Climat, le CITEPA, Agribalyse V3 et INCA 3.

La moyenne française

Objectif 2°C

2 Tonnes / pers

 ${\it Gaz inclus: CO2 (hors \, UTCATF \, France), \, CH4, \, N2O, \, HFC, \, SF6, \, PFC, \, H_2O \, \, (trainées \, de \, condensation).}$

Source : MyCO2 par Carbone 4 d'après le ministère de la Transition écologique, le Haut Conseil pour le Climat, le CITEPA, Agribalyse V3 et INCA 3.

Tous les gestes se valent?

Lequel est le pire ?

Regarder Netflix Pendant 7 heures

0,3 kgC02e

Acheter 2 kg de tomates hors saison

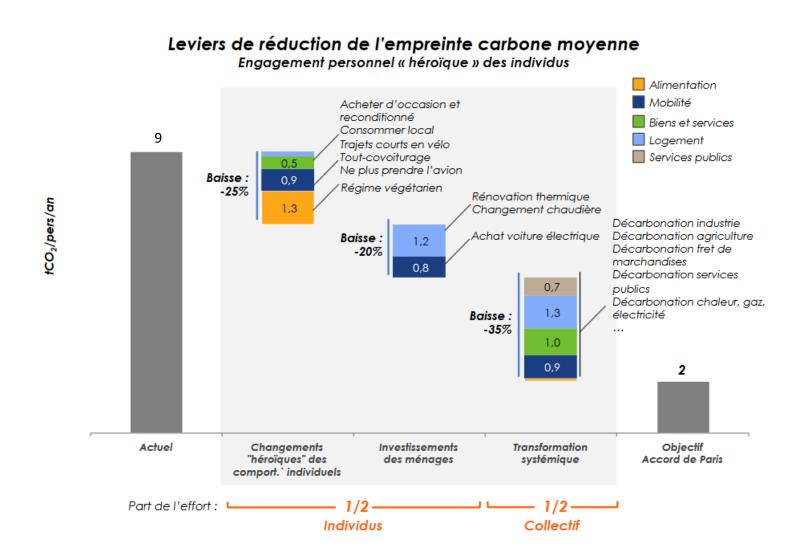
4 kgCO2e

~1 kgCO2e pour une tomate de saison

Prendre l'avion Aller-retour Paris-Los Angeles

3000 kgC02e

Manger 300 grammes d'agneau



15 kgCO2e

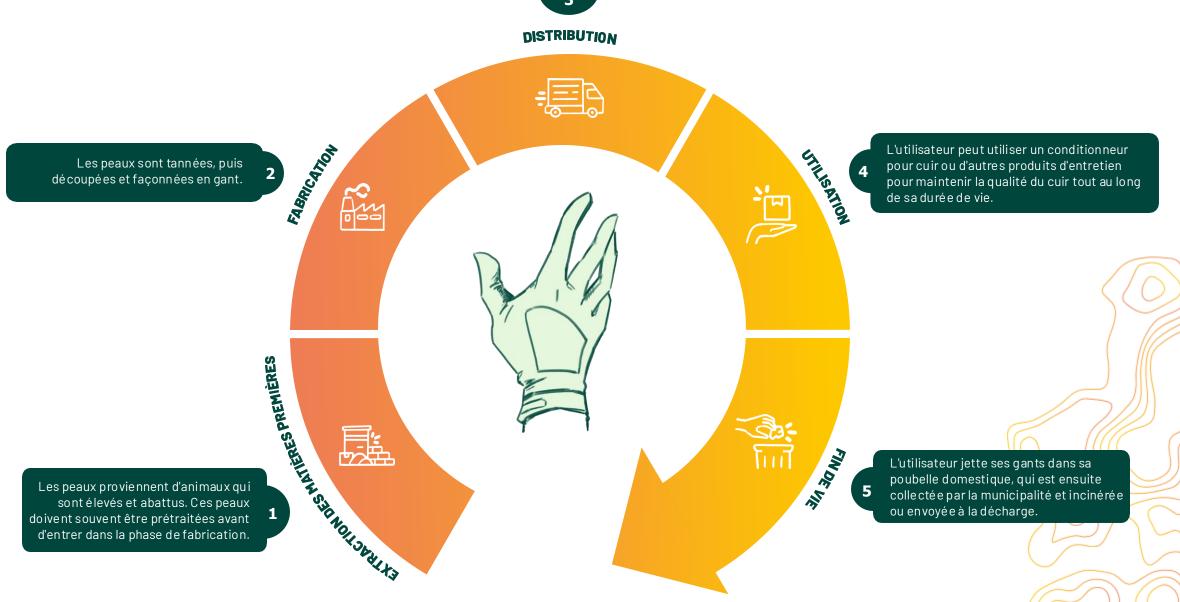
Connaitre les ordres de grandeurs, ça change tout

Notre bilan: encore du boulot

Individuellement, il reste du chemin à parcourir

02

Mesurer l'impact Par l'Analyse en Cycle de Vie



On veut savoir l'impact de ces gants pour les **réduire**

Le produit est transporté par bateau et par camion d'une usine de fabrication de gants à un centre de distribution, avant d'être acheminé chez un détaillant où il est stocké puis livré à l'utilisateur final.

3

Page 31

L'Analyse de cycle de vie

- Fondée sur une approche systémique de quantification des impacts environnementaux sur tout le cycle de vie d'un produit, d'un service ou d'une organisation
- Une analyse multicritère normée prenant en comptes des indicateurs environnementaux
- Un outil d'identification des enjeux et des contributeurs environnementaux
- Un outil de comparaison et d'aide à la décision qui permet d'éviter les transferts d'impacts

Un exemple plutôt célèbre

Product Environmental Report

iPhone 15 Pro and iPhone 15 Pro Max

Date introduced September 12, 2023

Carbon Footprint

Progress toward our 2030 goal

20% recycled or renewable content1

Over 38% of manufacturing electricity sourced from supplier clean energy projects²

Smarter chemistry³

- Arsenic-free display glass
- Mercury-free
- Brominated flame retardant-free
- PVC-free
- Beryllium-free

Longevity

iPhone 15 Pro and iPhone 15 Pro Max feature Ceramic Shield as well as IP68 water and dust resistance that enhance the durability of the device.4

Responsible packaging

99% fiber-based, due to our work to eliminate plastic in packagings

100% recycled or responsibly sourced wood fibers

Recovery

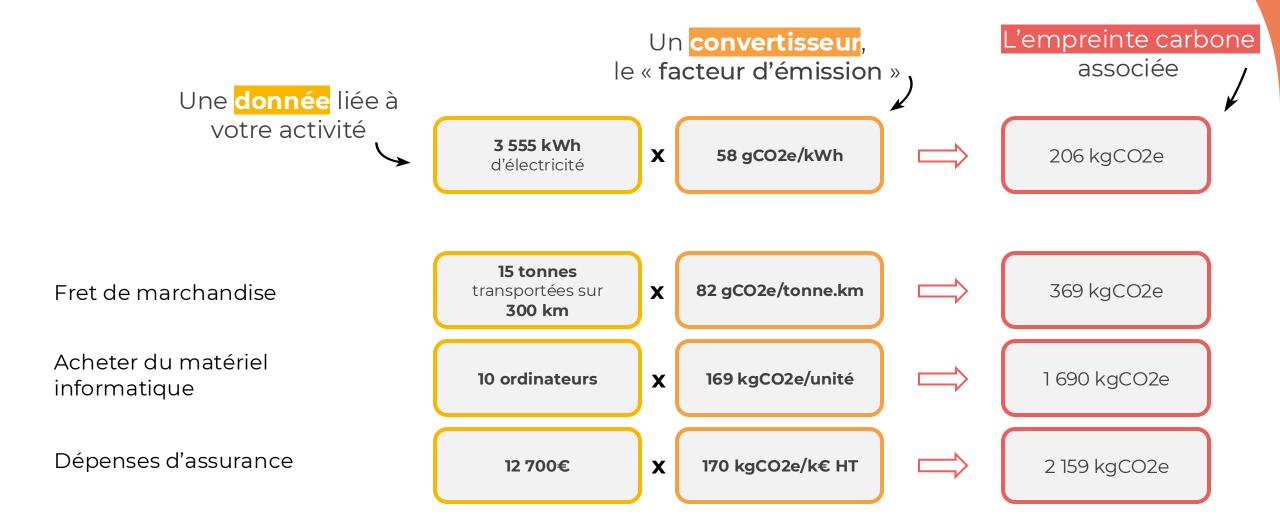
Return your device through Apple Trade In, and we'll give it a new life or recycle it for free.

Responsible manufacturing

Apple Supplier Code of Conduct sets strict standards for the protection of people in our supply chain and the planet.

100% recycled cobalt in the battery6

Greenhouse gas emissions were calculated using a life cycle assessment (LCA) methodology in accordance with ISO 14040, ISO 14044, and ISO 14067 standards and based on iPhone 15 Pro with 128GB. The LCA boundary for this product includes the physical product and all of its components, as well as all in-box accessories.


Greenhouse gas emissions	iPhone 15 Pro 128GB	iPhone 15 Pro Max 256GB
Total product footprint	66 kg CO₂e	75 kg CO₂e
Apple emissions from utility-purchased electricity (scope 2)	0 kg CO₂e	0 kg CO _z e
Life cycle product emissions (scope 3)	66 kg CO₂e	75 kg CO₂e
Production	83%	83%
Transportation	3%	3%
Product use	15%	15%
End-of-life processing	<1%	<1%
GHG reductions achieved ⁹	↓29%	↓30%

Note: Percentages may not total 100 due to rounding.

We've also calculated the product carbon footprint for different configurations.

Configuration	iPhone 15 Pro	iPhone 15 Pro Max
256GB	71 kg CO₂e	75 kg CO₂e
512GB	83 kg CO ₂ e	87 kg CO₂e
1TB	107 kg CO₂e	110 kg CO ₂ e

Les facteurs d'émission : fonctionnement

Calculer un impact carbone

Quelle est l'empreinte carbone de 2h de vidéoprojection en amphi?

900W

x 2h = 1.8 kWh

★ Electricité/2022 - mix moyen/consommation

93 grammes CO2e

France continentale

0.0520 kg éq. CO2/kWh

Incertitude 10 %

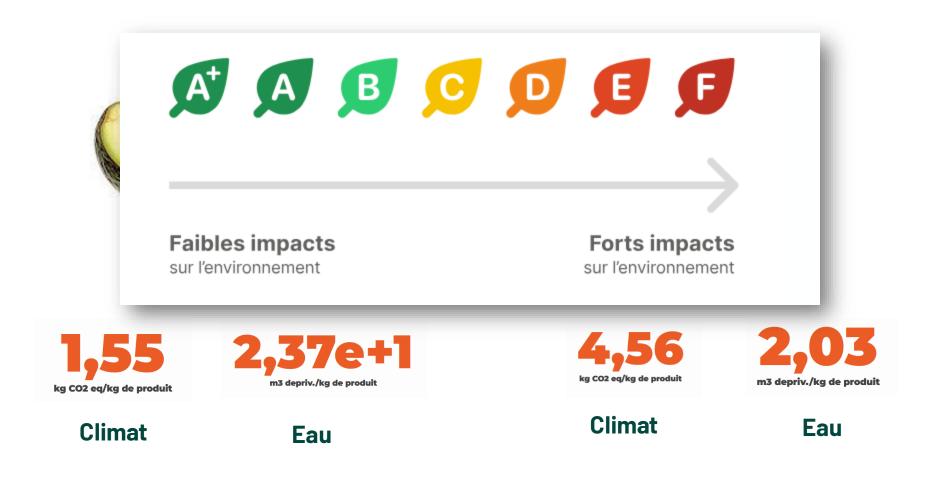
Quelle est l'empreinte carbone d'un an d'abonnement téléphonique ?

x 12 mois = 192 €

€ Service/Télécommunications

32 kg CO2e

France continentale



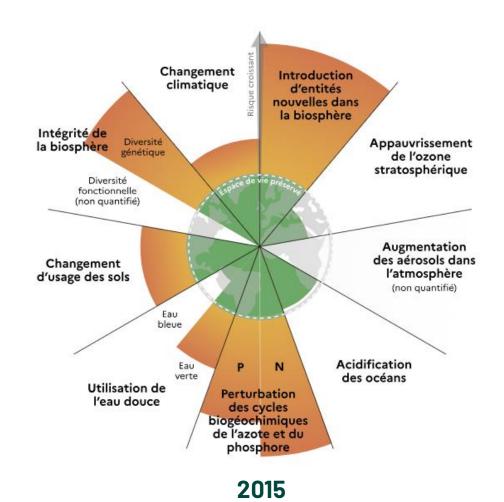
Incertitude 80 %

Une affaire de compromis

Une base d'ACV : Agribalyse

Les orders de grandeurs, c'est important

L'impact de votre nourriture sur https://agribalyse.ademe.fr/app



e Ciqual : <mark>25478</mark> :as, tartes et crêpes salées (Entrées et pla	ts composés)	
Changement climatique	Impact (Score Unique PEF) par étapes du cycle de vie	Impact (Score Unique PEF) par ingrédients
3.63	Agriculture 71.7 %	Fromage 31.8 %
kg CO2 eq/kg de produit	Transformation 9.3 %	Fromage mozzarella 12.1 %
DQR: 1.58 (?)	Emballage	Roquefort 27 %
	Transport	Tomate
	Supermarché et distribution	Farine de blé
	Consommation	Autres étapes
	₹ 7.5 %	23.7 %

Indicateur		Unité
Score unique EF		mPt/kg de produit
Changement climatique	3,63	kg CO2 eq/kg de produit
Appauvrissement de la couche d'ozone	5,75e-8	kg CVC11 eq/kg de produit
Rayonnements ionisants	1,39	kBq U-235 eq/kg de produit
Formation photochimique d'ozone	7,58e-3	kg NMVOC eq/kg de produit
Particules	4,62e-7	disease inc./kg de produit
Acidification terrestre et eaux douces	6,29e-2	mol H+ eq/kg de produit
Eutrophisation terreste	2,7e-1	mol N eq/kg de produit
Eutrophisation eaux douces	4,83e-4	kg P eq/kg de produit
Eutrophisation marine	1,51e-2	kg N eq/kg de produit
Utilisation du sol	2,48e+2	Pt/kg de produit
Écotoxicité pour écosystèmes aquatiques d'eau douce	2,84e+1	CTUe/kg de produit
Épuisement des ressources eau	8,25e-1	m3 depriv./kg de produit
Épuisement des ressources énergétiques	4,56e+1	MJ/kg de produit
Épuisement des ressources minéraux	1,32e-5	kg Sb eq/kg de produit
Effets toxicologiques sur la santé humaine : substances non-cancérogènes (?)	5,05e-8	kg Sb eq/kg de produit
Effets toxicologiques sur la santé humaine : substances cancérogènes (?)	1,92e-9	kg Sb eq/kg de produit

Mais ce n'est pas tout

C'est une crise environnementale

2023

QUIZZ IMPACTS

Page 39

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

Freshwater Freshwater eutrophication

Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion

Freshwater Freshwater * toxicity

Land use

Human toxicity non-cancer effects

Water scarcity footprint

CAUSE

CONSEQUENCE

www.nasa.gov

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

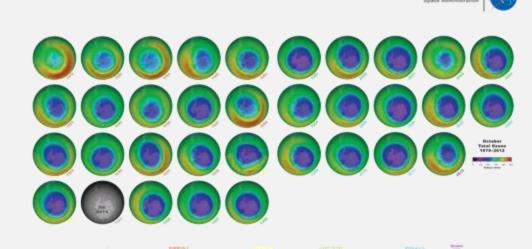
Freshwater eutrophication

Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion Non-renewable energy

Land use



Human toxicity non-cancer effects

Water scarcity footprint

Page 41

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

Freshwater Freshwater eutrophication

Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion Non-renewable energy

Freshwater toxicity

Land use

Human toxicity non-cancer effects

Water scarcity footprint

CAUSE

Page 42

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

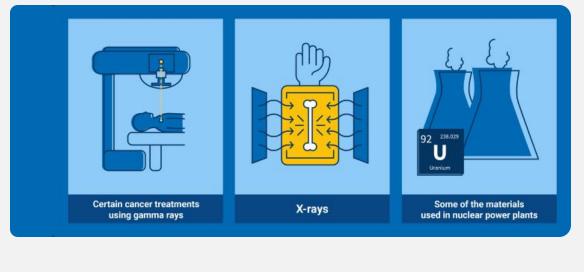
Freshwater Freshwater eutrophication

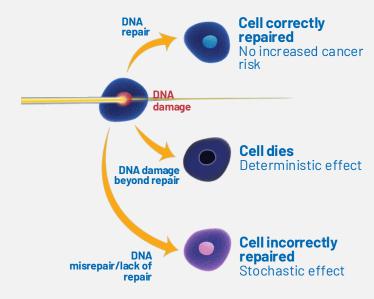
Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion

Freshwater * toxicity


Land use



Human toxicity non-cancer effects

Water scarcity footprint

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

Freshwater Freshwater eutrophication

Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion Non-renewable energy

Freshwater toxicity

Land use

Human toxicity non-cancer effects

Water scarcity footprint

QUIZZ IMPACTS

Page 44

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

Freshwater eutrophication

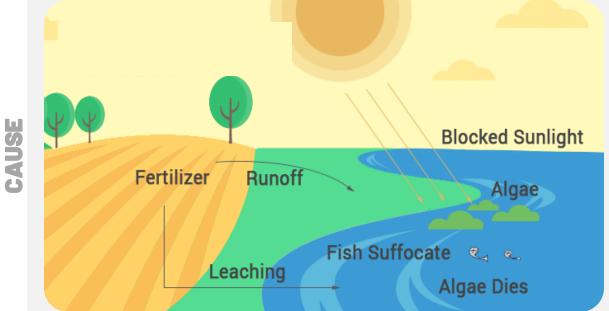
Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion

CONSEQUENCE

Freshwater * toxicity


Land use

Human toxicity non-cancer effects

Water scarcity footprint

Global warming

Human toxicity cancer effects

Acidification

Particulate matter

Terrestrial eutrophication

lonising radiation

Ozone depletion

Photochemical ozone formation

Freshwater eutrophication

Mineral resource depletion

Marine eutrophication

Non-renewable energy resource depletion Non-renewable energy

Freshwater toxicity

Land use

Human toxicity non-cancer effects

Water scarity footprint

PEF score

Acidification

Terrestrial eutrophication

Freshwater eutrophication

Marine eutrophication

Freshwater toxicity

HUMAN HEALTH

(

Ozone depletion

Human toxicity non-cancer effects

Human toxicity cancer effects

Particulate matter

lonising radiation

Photochemical ozone formation

CLIMATE CHANGE

Global warming

NATURAL RESOURCES

Mineral resource depletion

Land use

WATER

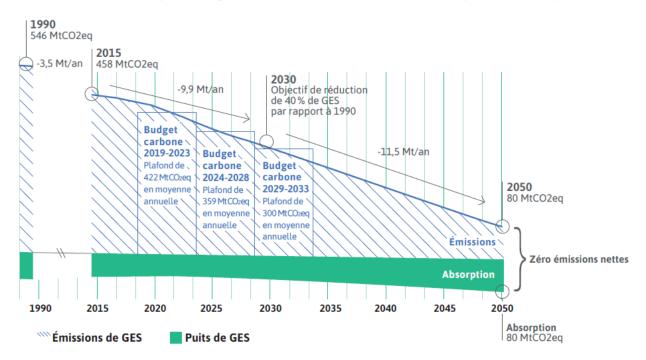
Water scarity footprint

Midpoint impact category		Damage pathway	Endpoint area of protection
Particulate matter		Increase in respiratory disease	
hotochemical ozone formation		morease in respiratory discuse	
lonising radiation		Increase in various types of cancer	
Ozone depletion		more add in various types of sumeer	Damage to human health
Human toxicity, cancer		Increase in other diseases/causes	
Human toxicity, non cancer			
Climate change		Increase in malnutrition	
Wateruse	ATT.		
Freswater ecotoxicity		Damage to freshwater species	Damage to ecosystems
reswater euthrophication			
Acidification		Damage to terrestrial species	
Ferrestrial euthrophication			
Land use		Damage to marine species	Damage to resource availability
Marine ecotoxicity			
Mineral resources		Increased extraction costs	
Fossil resources		Oil/gas/coal energy cost	

Dans la chimie ?Un sujet important

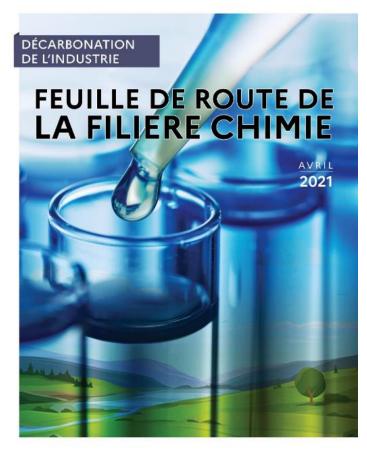
En France : la Stratégie Nationale Bas Carbone

Stratégie nationale bas-carbone

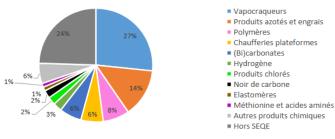


La transition écologique et solidaire vers la neutralité carbone

Évolution des émissions et des puits de GES sur le territoire français entre 1990 et 2050 (en MtCO₂eq). Inventaire CITEPA 2018 et scénario SNBC révisée (neutralité carbone)



Dans la chimie?



Inventaire par sous-secteur

La répartition des émissions annuelles par sous-secteur de la filière Chimie en 2018 en France pour les sites compris dans le Système européen de quotas d'émissions (SEQE) est donnée dans le diagramme ci-dessous. La part des émissions non couvertes par le SEQE (24%) est également représentée.

Émissions de la filière Chimie en 2018

Source: EUTL2.

Les deux sous-secteurs les plus émetteurs de la filière chimie sont la pétrochimie (27 %) et les engrais et produits azotés (14 %). Le reste des émissions de GES de la filière est très fragmenté.

II. Trajectoire de réduction des émissions de la filière Chimie à l'horizon 2030

Présentation générale

Les différents leviers permettant d'atteindre une réduction de 26 % des émissions annuelles de GES d'ici 2030 ainsi que les réductions d'émissions annuelles correspondantes et les actions globales à mener par l'État et par la fibère sont rassemblés ci-dessous. Le détail pour chacun de ces leviers est domé dans la Section «Décomposition par leviers». Ce travail reste à établir pour certains modes de décarbonation de la chaleur⁵ tels que l'autoconsommation de biogaz, le raccordement à des unités de valorisation énergétique des déchets (UVE) et le solaire thermique.

Levier	Réduction des émissions annuelles de GES entre 2015 et 2030 (en MtCO _{2,eq})		
Efficacité énergétique	-1,8		
Chaleur biomasse	-1,4		
Chaleur CSR	-0,8		
N_2O	-0,8		
HFC	-0,9		
Total leviers matures	-5,7		
En % par rapport à 2015	-26%		

Actions transverses à mener par la fili

Se saisir des outils mis en place dans le cadre du plan de relance (notamment pour la décarbonation de l'industrie : AAP efficacité energétique et décarbonation des procédés, AAF chaleur bas-carbone, guichet ASP), ainsi que ceux disponibles au niveau européen (fonds de transition juste, fonds d'innovation de l'ETS notamment), pour atteindre les objectifs de réduction d'émission identifiés.

Dans la chimie?

Groupe Marchés Familles de produits Product finder Développement durable

Accueil > Média > Actualités > Arkema accélère le calcul de l'Empreinte Carbone de l'ensemble de son portefeuille produits

≪ PARTAGER

Corporate | Produits | Climat

28 NOV. 2023 - ACTUALITÉ

Arkema accélère le calcul de l'Empreinte Carbone de l'ensembl de son portefeuille produits

En accélérant la caractérisation de l'empreinte carbone des solutions d'Arkema, l'outil CACTUS permettra de dépasser, avant 2024, l'objectif de 50 % des ventes d'Arkema couvertes par un bilan carbone ou une analyse de cycle de vie (ACV) complète, contre 41 % en 2022 et 27 % en 2021.

Ainsi, lors du Capital Markets Day du 27 septembre 2023, le Groupe a annoncé un nouvel objectif visant à atteindre 90 % de ses ventes couvertes par une ACV d'ici 2030. Il s'agit d'une nouvelle étape dans l'ambition de développement durable du Groupe, et en augmentant fortement sa capacité à calculer le PCF, Arkema aidera ses clients dans leur ambition de réduire leurs émissions de GES du scope 3 amont et dans leur quête de solutions plus durables.

*CACTUS: Carbon footprint Automated Calculation for Transparent Use and Share (calcul automatisé de l'empreinte carbone pour une utilisation et un partage transparents)

Dans le cadre de l'engagement fort un droupe en raveur de la decarpoint l'ensemble de sa chaîne de valeur, Arkema a lancé l'outil numérique CACTUS*, qui vise à automatiser le calcul de l'Empreinte Carbone Produit (ou Product Carbon Footprint -PCF) de tout le portefeuille de solutions du Groupe.

Une estimation de vos projets

Aussi chez les étudiantes et étudiants

Mesurer l'empreint environnementale

Un outil indispensable de l'ingénieur de demain