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NOS DOMAINES DE RECHERCHE

RESPONSIBLE

OIL & GAS
HYDROCARBURES 

RESPONSABLES

▪ Carburants

▪ Pétrochimie

▪ Traitement du gaz 

naturel

CLIMAT

ENVIRONNEMENT

ECONOMIE CIRCULAIRE

▪ Recyclage des métaux 

et plastiques

▪ Capture, stockage et 

utilisation du CO2

▪ Qualité de l’air

▪ Interaction climats/sols 

et qualité de l’eau

▪ Analyse 

environnementale/

analyse de cycles de vie

MOBILITE DURABLE

▪ Electrification et 

hybridisation

▪ Stockage d’électricité

▪ Mobilité connectée

▪ Mobilité hydrogène

▪ Matériaux stratégique 

pour une mobilité 

durable

ENERGIES 

RENOUVELABLES

▪ Biofuels & e-fuels

▪ Chimie biosourcée

▪ Energie eolienne et 

océanique

▪ Stockage d’énergie

▪ Hydrogène naturel

▪ Energie géothermique

▪ Traitement de gaz 

renouvelable

Recherche fondamentale : le socle commun pour l’innovation future
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LA PÉTROCHIMIE : DU VAPOCRAQUEUR…

Pétrochimie : vapocraquage 
Charge naphta (C4-C10 alcanes) ou éthane (C2 ex-gaz de schistes)

Conditions: T = 700 °C, basse pression, diluant eau (30-90 % pds)
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… A LA CHIMIE DE SPÉCIALITÉ

➢Arbre C4

Butane, Butènes, Butadiène

Acide succinique

Butanediols
Succinamide
Succinimide

➢Arbre Propylène (C3)

Acide acrylique

Acrylonitrile
Propanol

Propylène glycol

Acétone…

➢Arbre Ethylène

Ethanol

Ethylène glycol
But-1-ène, Hex-1-ène
Chlorure de vinyle …

➢Arbre aromatiques
p-xylène

p-cumène
Phénol
PTA

B, T, X, EB

Applications principales : 
Solvants, Intermédiaires
Monomères (PE, PP, PVC, PET…)
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QUE PEUT-ON FAIRE AVEC DE LA BIOMASSE ?

Ressources alternatives au vapocraqueur 
Nouvelles molécules, nouvelles 
fonctionnalités

➢Arbre C4

Butane, Butènes, Butadiène

Acide succinique
Butanediols
Succinamide
Succinimide

➢Arbre Propylène (C3)

Acide acrylique
Acrylonitrile

Propanol
Propylène glycol

Acétone…

➢Arbre Ethylène

Ethanol
Ethylène glycol

But-1-ène, Hex-1-ène
Chlorure de vinyle …

Composés 
furaniques

Acides

Lactones

Dérivés de 
sucres

Top Value Added Chemicals From Biomass Vol.I , US Department of Energy, 2004
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QUELLE BIOMASSE? QUELLES MOLÉCULES

Biomasse « 1G » :

Sources productives en graines amylacées (ex. maïs, blé)

Sources productives en saccharose (ex. canne à sucre, betterave)

Sources productives en graines oléagineuses (ex. huiles de colza, 
tournesol…)

Sucres

Saccharose, glucose, fructose…

Triglycérides

15-20 MJ/kg, H/C ~ 2, O/C ~ 1

45 MJ/kg, H/C ~ 1,7, O/C ~ 0,1
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QUELLE BIOMASSE? QUELLES MOLÉCULES

Biomasse « 2G » :

Résidus agricoles et forestiers 

Biomasse lignocellulosique = « sucres + lignine »

Lignin Hemicellulose

Polymer of cellobiose

crystalline supramolecular structure

Polymer of C5 and C6 sugars

Softer polysaccharides

polymer of phenolic monomers

cementing effect 
Cellulose

Cultures dédiées à courtes rotations

15-20 MJ/Kg, H/C ~ 1-1.5, O/C ~ 0,4-0,6 (mass of oxygen ~ 50%)

lignine
cellulose

hémicell.
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COMMENT EXTRAIRE LES SUCRES DE LA BIOMASSE 2G ?

Projet Futurol
Nécessité d’un « fractionnement » chimique de la biomasse

Challenges for enzymatic hydrolysis

- High solid biomass loading

- Low enzymes concentration

Prétraitement : explosion à la vapeur 

Hydrolyse enzymatique : cocktail 
d’enzymes (cellulases)

Fermentation : Saccharomyces cerevisiae
(levure)

lignine
cellulose

hémicellulose
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COMMENT EXTRAIRE LES SUCRES DE LA BIOMASSE 2G ?

Projet Futurol
Nécessité d’un « fractionnement » chimique de la biomasse

Challenges for enzymatic hydrolysis

- High solid biomass loading

- Low enzymes concentration

Prétraitement : explosion à la vapeur 

Hydrolyse enzymatique : cocktail 
d’enzymes (cellulases)

Fermentation : Saccharomyces cerevisiae
(levure)

lignine
cellulose

hémicellulose

Xylose et glucose
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QUELLES BIOMASSE ? QUELLES MOLÉCULES ?

Biomasse « 1G » :
+ : Faible complexité, industrie mature 

- : Compétition avec usage alimentaire

Biomasse « 2G »:
+ : Valorisation de déchets, pas de compétition avec usage alimentaire

- : Procédés de transformation complexes
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PROBLÉMATIQUE ET ENJEUX

La biomasse pour la chimie : une réponse à différents enjeux

Enjeu d’indépendance vis-à-vis de la disponibilité des ressources 
Développement de voies de synthèses à partir de ressources alternatives

Valorisation de déchets

Enjeu d’innovation et de compétitivité
Développement de molécules avec de nouvelles fonctionnalités

Simplification de certains schémas de fabrication (nouveaux intermédiaires)

Logique de création d’emplois et de (re)localisation de productions industrielles 
Ressources disponibles localement

Créations d’emplois industriels et agricoles
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QUELLE PARTIE DE LA BIOMASSE UTILISER ?

Triglycérides Sucres Lignine (phénoliques)

Biomasse 1G

Acides gras : inertes, 
réactivité limitée 

Biomasse 2G (lignocellulosique)

Glycérol : conversion 
possible (hydrogénolyse)  

Structures « simples »

Fermentables

Arbre produit riche et varié

Réactivité difficile à contrôler

Structures complexes, 
relativement réfractaires

Certains motifs intéressants 
pour cosmétique/pharma

Saccharose Xylose Glucose
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CHIMIE DES SUCRES : CONVERSION CHIMIQUE

Triglycérides Sucres Lignine (phénoliques)

Biomasse 1G

Acides gras : inertes, 
réactivité limitée 

Biomasse 2G (lignocellulosique)

Glycérol : conversion 
possible (hydrogénloyse)  

Structures « simples »

Fermentables

Arbre produit riche et varié

Réactivité difficile à contrôler

Structures complexes, 
relativement réfractaires

Certains motifs intéressants 
pour cosmétique/pharma

Saccharose Xylose Glucose
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QU’EST-CE QUE C’EST QU’UN SUCRE ?

Définition : monosaccharide Cn(H2O)n avec 7 ≥ n ≥ 3 (« carbohydrate » en anglais)

Jusqu’à 5 formes tautomères en équilibre! 

Glucose (n = 6) Fructose (n = 6) Xylose (n = 5)

(valeurs à l’équilibre dans 
l’eau à 25 °C)
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QU’EST-CE QUE C’EST QU’UN SUCRE ?

Grosse différence avec les hydrocarbures : sucres notoirement instables en température
Non distillables !

Séparation par distillation impossible 

Pas de vaporisation = pas de réaction en phase gaz ; phase liquide uniquement

Analyse (directe) par GC impossible

GC-dérivée

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

7 9 11 13 15 17 19 21 23

W

G
LU

M
A

N

FR
U

D
M

SO

ER
O

G
A

 

tr (min)

HPLC 

tr (min)

13C RMN

δ (ppm)

Fructose pur

Fructose pur



17

É N E R G I E S   N O U V E L L E S

17 |   ©  2 0 1 9   I F P E N

QU’EST-CE QUE C’EST QU’UN SUCRE ?

Grosse différence avec les hydrocarbures : sucres notoirement instables en 
température

Formation d’humines = perte de rendements 

Possible de les limiter en travaillant à basse concentration en sucres

Espèces polymériques de condensations furaniques et sucres (et intermédiaires de conversion)…

Solubles… … goudrons… … ou solides.

Herzfeld etal., J. Phys. Chem. B, 2011, 115, 5741

Weckhuysen et al., ChemSusChem 2013, 6, 1745

13C MAS NMR

« Coke très oxygéné » difficile a brûler…
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CONVERSION CHIMIQUE DES SUCRES : ARBRE PRODUIT
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CONVERSION CHIMIQUE DES SUCRES : ARBRE PRODUIT

Ethylène glycol

5-HMF

Glucose

Fructose
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ETHYLÈNE GLYCOL BIOSOURCÉ

Un grand produit industriel 
Production de l’ordre de 50 Mt/an (2022), en forte croissance (30 Mt/an en 2014, 5-8 %)

Utilisé comme antigel et monomère du PET

OH

Ethanol

OH

OH

-H2O MEG
Oxydation Hydratation

Ethylène

ATOLGLUGLU FRU ou fermentation
E. Oxyde

O

Procédé « fossile »

OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

Solvant eau

Voies biosourcée ?
Voie « Éthanol »

Voie « Rétroaldolisation 1 étape»

Voie « Rétroaldolisation 2 étapes »
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FORMATION D’ÉTHYLÈNE GLYCOL PAR HYDROGÉNOLYSE

Hydrogénolyse de la cellulose ou du glucose :

Problème : séparation difficile des glycols par distillation

Découverte de l’effet du tungstène (T. Zhang, Dalian Institute of Chemical Physics): 

US1963997 : NiCrO4, 275 °C, 200 bar H2

US2209055 : Ni Raney, 150 °C, 140 bar H2

0
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Ni/AC Pt/AC WC/AC Ni-WC/AC

R
en

d
e

m
e

n
t 

(%
)

EG
PG
Sor

Cellulose
245 °C, 6 MPa H2, 30 min

Zhang et al., Angew. Chem., 2008, 47, 8510

Sélectivités pour EG 
remarquables avec 

W2C + métal hydrogénant !

Produit 1,2-PDO 1,2-butanediol EG

Téb (°C) 188 192 197
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

+H2 ?
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

Contrôle de la sélectivité :

0



26

É N E R G I E S   N O U V E L L E S

26 |   ©  2 0 1 9   I F P E N

FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

Contrôle de la sélectivité :

0

Rétro-aldol vs. Isomérisation 

Catalyseur « W »
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

Contrôle de la sélectivité :

0

Rétro-aldol vs. Isomérisation 

Catalyseur « W »

Ea = 140 kJ/mol

Ea = 70 kJ/mol



28

É N E R G I E S   N O U V E L L E S

28 |   ©  2 0 1 9   I F P E N

FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

Contrôle de la sélectivité :

0

Rétro-aldol vs. Isomérisation 

Catalyseur « W »

Rétro-aldol vs. Hydrogénation

Travail à haute température

Ea = 140 kJ/mol

Ea = 70 kJ/mol
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FORMATION D’ÉTHYLÈNE GLYCOL

Mécanisme :

Contrôle de la sélectivité :

0

Rétro-aldol vs. Isomérisation 

Catalyseur « W »

Rétro-aldol vs. Hydrogénation

Travail à haute température

Réduire formation d’humines

Travail à faible concentrations

Hydrogénation du glycolaldéhyde 

→ Sélectivités en EG > 70 %

Ea = 140 kJ/mol

Ea = 70 kJ/mol
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EVALUATION DU PROCÉDÉ : 1- ÉCONOMIE

Analyses technico-économiques 

Unité de 100 kt/an
OH

Ethanol

OH

OH

-H2O MEG
Oxydation Hydratation

Ethylène

ATOLGLUGLU FRU ou fermentation
E. Oxyde

O

Procédé « fossile »

OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

Voie « Éthanol »

Voie « Rétroaldolisation 1 étape »

Voie « Rétroaldolisation 2 étapes »

Prix marché (ex-fossile)

Des coûts de production :

• Très dépendants du prix de la charge (glucose ici)
➢ Importance de la sélectivité (ou rendement)

• Généralement supérieurs aux versions ex-fossile
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EVALUATION DU PROCÉDÉ : 2 – ANALYSE DE CYCLE DE VIE

/!\ les analyses n’incluent 
pas la fin de vie
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Fossile Voie ethanol Rétroaldolisation 1
étape

Rétroaldolisation 2
étapes
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O
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,e
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/ 
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G

 

Voie 3 - Posttraitement

Voie 3 - Pyrolyse

Voie 2 - Glucose vers EG

Oxyde d'étylène vers EG

Oxydation de l'éthylène

Production ethylene (fossile)

Production d'éthylène à partir du glucose

Production glucose

3.5

x

4.5

x

5.5

x

2.0

x

x Total

OH

Ethanol

OH

OH

-H2O MEG
Oxydation Hydratation

Ethylène

ATOLGLUGLU FRU ou fermentation
E. Oxyde

O

Procédé « fossile »

Voie « Ethanol »
OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

Voie « Rétroaldolisation 1 étape »

OH

OH

O

OH

Glycolaldéhyde MEG

HydrogénationRétro-aldolisationGLU GAD

Voie « Rétroaldolisation 2 étapes »

Une efficacité très dépendante de la méthode de synthèse
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5-HYDROXYMÉTHYLFURFURAL, LE « GÉANT ENDORMI »

Boisen et al. Chem Eng Res Des. 2009, 87, 1318–1327

Obtenu par déshydratation des sucres

Faible stabilité intrinsèque (production et stockage)

Difficile à séparer du milieu réactionnel

Rendements de synthèse généralement faibles
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5-HMF POUR LA PRODUCTION DE RÉSINES

Substance of Very High Concern (SVHC)
1907 : Leo Baekeland découvre la 

Bakelite, une résine phénol-formaldéhyde
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5-HMF POUR LA PRODUCTION DE RÉSINES

Formaldéhyde
5-HMF

Partenariat depuis 2021 pour le développement d’un procédé industriel de production de 5-HMF
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SUCRES FRUCTOSE VERS 5-HMF

La réaction chimique :

Catalyse acide de Brønsted :
Homogène : HCl, APTS,…

Hétérogène : zéolithes, résines,… 

Solvant :
On évite l’eau pour limiter la réaction de réhydratation du 5-HMF (acides lévulinique et formique) 

Solvants polaires aprotiques préférables (DMSO, GVL, NMP…)

Déshydratation

Cible

Produits indésirables
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MÉCANISME RÉACTIONNEL : CYCLIQUE OU ACYCLIQUE ?

Cyclique
(Intermédiaires cycliques seulement)

Acyclique
(Intermédiaires clés acycliques)

ACS Catal. 2017, 7, 3489
J. Phys. Chem. C 2011, 115, 21785
J. Chem. Technol. Biotechnol. 1997, 69, 35
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Fructose

1h40

1h

45min

28min

12.5min

5min

2min

t=0

C 1

O

O HH O

O H

O
O

OH

C1
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HO OH

C4C3

O

HO O

I1 AFF

I2

HMF (C4)(C3)

    (ppm)

(C3) (C5)

C5

C3

O

HO

HO O

1h40

1h

45min

28min

12.5min

5min

2min

t=0

*U-13C6-Fructose employé

IDENTIFICATION DES INTERMÉDIAIRES PAR 13C RMN 
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IDENTIFICATION DES INTERMÉDIAIRES PAR 13C RMN 

Fructose

1h40

1h

45min

28min

12.5min

5min

2min

t=0

C 1
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O HH O

O H

O
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(C3) (C5)
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O
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HO O

1h40

1h

45min

28min

12.5min

5min

2min

t=0

*U-13C6-Fructose employé Espèces détectées :
• Intermédiaires I1 and I2 vers 5-HMF
• Espèce transitoire AFF

Mécanisme Cyclique



39

É N E R G I E S   N O U V E L L E S

39 |   ©  2 0 1 9   I F P E N

POURQUOI LE FRUCTOSE ET PAS LE GLUCOSE ?

Formes du glucose: Formes du fructose: 

* Valeurs dans l’eau à 25 °C
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POURQUOI LE FRUCTOSE ET PAS LE GLUCOSE ?

Formes du glucose: Formes du fructose: 

* Valeurs dans l’eau à 25 °C
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OPTIMISER LA SYNTHÈSE  

La réaction chimique :
(cible 80 % de rendement)

Problème 1 : l’eau
L’eau dégrade les rendements…

… mais le fructose est fourni sous 
forme de sirop (70 % pds) dans l’eau!

Problème 2 : la concentration
L’application industrielle nécessite des titres 
élevés en 5-HMF (≥ 20 % pds)

… mais les concentrations élevées mènent à 
davantage d’indésirables (réactions d’ordre 2)! 
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DISTILLATION RÉACTIVE EN MODE FED-BATCH 

Injection directe de la solution aqueuse dans le réacteur avec extraction en continu de l’eau 
par distillation 

Mode Fed-batch : 2h d’ajout, 2h de réaction

Réacteur 10 L
Ampoules de coulée

Fructose syrup
70 %pds in water

T = 120°C
P = 300 mbar

Solvent 1 + Catalyst
mR (t=0) = 5 kg

H2O + Solvent 1 + 
ε furfural

3 kg fed in 2h

Qfeed

Qvap

Equivalent [FRU] = 35 %pds
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DISTILLATION RÉACTIVE : ÉVOLUTION DES COMPOSITIONS
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[Fructose] < 2 % pds mais [HMF] ≈ 20 % pds

Optimisation par compromis entre
Conversion des oligomères et du fructose 
Dégradation des oligomères et 5-HMF

Glucose non converti dans ces conditions réactionnelles

82 % rendement
[HMF] ≈ 20 % pds
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DÉVELOPPEMENT DE PROCÉDÉ

Scale-up vers un procédé 
industriel

200 g

5 kg 500 kg

1+kt/y ?



45

É N E R G I E S   N O U V E L L E S

45 |   ©  2 0 1 9   I F P E N

CONCLUSION

Biomasse vers chimie :
Différentes biomasses (1G vs. 2G) 

Différentes molécules

Objectifs :

Diversifier les ressources

Localiser les productions 

Nouvelles fonctionnalités

Conversion des sucres :

Une réactivité riche mais complexe

Le bon sucre pour la bonne molécule

Nécessité de maîtriser les rendements
Eviter les sous-produits 

Via la catalyse

Via le procédé

Triglycérides

Sucres

Lignine
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